skip to main content


Search for: All records

Creators/Authors contains: "Di Pierro, Marianne"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In the age of Big Genomics Data, institutions such as the National Human Genome Research Institute (NHGRI) are challenged in their efforts to share volumes of data between researchers, a process that has been plagued by unreliable transfers and slow speeds. These occur due to throughput bottlenecks of traditional transfer technologies. Two factors that affect the effciency of data transmission are the channel bandwidth and the amount of data. Increasing the bandwidth is one way to transmit data effciently, but might not always be possible due to resource limitations. Another way to maximize channel utilization is by decreasing the bits needed for transmission of a dataset. Traditionally, transmission of big genomic data between two geographical locations is done using general-purpose protocols, such as hypertext transfer protocol (HTTP) and file transfer protocol (FTP) secure. In this paper, we present a novel deep learning-based data minimization algorithm that 1) minimizes the datasets during transfer over the carrier channels; 2) protects the data from the man-in-the-middle (MITM) and other attacks by changing the binary representation (content-encoding) several times for the same dataset: we assign different codewords to the same character in different parts of the dataset. Our data minimization strategy exploits the alphabet limitation of DNA sequences and modifies the binary representation (codeword) of dataset characters using deep learning-based convolutional neural network (CNN) to ensure a minimum of code word uses to the high frequency characters at different time slots during the transfer time. This algorithm ensures transmission of big genomic DNA datasets with minimal bits and latency and yields an effcient and expedient process. Our tested heuristic model, simulation, and real implementation results indicate that the proposed data minimization algorithm is up to 99 times faster and more secure than the currently used content-encoding scheme used in HTTP of the HTTP content-encoding scheme and 96 times faster than FTP on tested datasets. The developed protocol in C# will be available to the wider genomics community and domain scientists. 
    more » « less
  2. DNA sequencing plays an important role in the bioinformatics research community. DNA sequencing is important to all organisms, especially to humans and from multiple perspectives. These include understanding the correlation of specific mutations that plays a significant role in increasing or decreasing the risks of developing a disease or condition, or finding the implications and connections between the genotype and the phenotype. Advancements in the high-throughput sequencing techniques, tools, and equipment, have helped to generate big genomic datasets due to the tremendous decrease in the DNA sequence costs. However, the advancements have posed great challenges to genomic data storage, analysis, and transfer. Accessing, manipulating, and sharing the generated big genomic datasets present major challenges in terms of time and size, as well as privacy. Data size plays an important role in addressing these challenges. Accordingly, data minimization techniques have recently attracted much interest in the bioinformatics research community. Therefore, it is critical to develop new ways to minimize the data size. This paper presents a new real-time data minimization mechanism of big genomic datasets to shorten the transfer time in a more secure manner, despite the potential occurrence of a data breach. Our method involves the application of the random sampling of Fourier transform theory to the real-time generated big genomic datasets of both formats: FASTA and FASTQ and assigns the lowest possible codeword to the most frequent characters of the datasets. Our results indicate that the proposed data minimization algorithm is up to 79% of FASTA datasets' size reduction, with 98-fold faster and more secure than the standard data-encoding method. Also, the results show up to 45% of FASTQ datasets' size reduction with 57-fold faster than the standard data-encoding approach. Based on our results, we conclude that the proposed data minimization algorithm provides the best performance among current data-encoding approaches for big real-time generated genomic datasets. 
    more » « less